Modern neural networks are growing not only in size and complexity but also in inference time. One of the most effective compression techniques — channel pruning — combats this trend by removing channels from convolutional weights to reduce resource consumption. However, removing channels is non-trivial for multi-branch segments of a model, which can introduce extra memory copies at inference time. These copies incur increase latency — so much so, that the pruned model is even slower than the original, unpruned model. As a workaround, existing pruning works constrain certain channels to be… Modern neural networks are growing not only in size and complexity but also in inference time. One of the most effective compression techniques — channel pruning — combats this trend by removing channels from convolutional weights to reduce resource consumption. However, removing channels is non-trivial for multi-branch segments of a model, which can introduce extra memory copies at inference time. These copies incur increase latency — so much so, that the pruned model is even slower than the original, unpruned model. As a workaround, existing pruning works constrain certain channels to be… Read More