The Pandas Series.mean() method is used to calculate the mean or average of the values. It returns a float value representing the mean of the series. In this article, I will explain the syntax of Series.mean() function, its parameters, and how to compute the mean values of a given Series object with examples.
1. Syntax of Series.mean() Function
Following is the syntax of creating Series.mean() function.
# Syntax of Series.mean() function
Series.mean(axis=_NoDefault.no_default, skipna=True, level=None, numeric_only=None, **kwargs)
Following are the parameters of the mean().
axis – {index (0)}: Specify the axis for the function to be applied on. For Series, this parameter is unused and defaults to 0.
skipna – bool, default True: Excludes all None/NaN from the mean/computing the result. Default set to True
level – Use with multiindex. Takes int or level name, default None
numeric_only – Excludes all non-numeric values. Considers only int, float & boolean. Default None
**kwargs – Additional keyword arguments to be passed to the function.
2. Pandas Series mean() Usage
The mean() function returns the arithmetic mean of given object elements in Pandas. Arithmetic mean is a sum of elements of given object, along with the specified axis divided by the number of elements.
You can also specify the axis parameter to specify the axis along which the mean is calculated. By default, axis=0, which means the mean is calculated along the rows (i.e., across all the columns). If you set axis=1, the mean is calculated along the columns (i.e., across all the rows).
Now, let’s create pandas series using a list of values.
import pandas as pd
import numpy as np
# Create a Series
ser = pd.Series([13, 25, 6, 10, 12, 9, 20])
print(ser)
The following example calculates the mean.
# Use Series.mean() function
ser2 = ser.mean()
print(ser2)
Yields below output.
# Output:
13.571428571428571
3. Series Mean Ignore NaN
By default skipna=True meaning it ignores the NaN (Not a Number) values when calculating the mean. If a series contains NaN values, they are automatically excluded from the calculation.
# Pandas series mean ignore nan
ser = pd.Series([13, 25, None, 10, 12, None, 20, 30, np.nan])
ser2 = ser.mean(skipna = True)
print(ser2)
# Output:
# 18.333333333333332
You can also use the skipna=False to not ignore NaN values, and if you have Nan values in the series it returns nan values.
# Pandas series mean ignore nan
ser = pd.Series([13, 25, None, 10, 12, None, 20, 30, np.nan])
ser2 = ser.mean(skipna = False)
print(ser2)
# Output:
# nan
4. Complete Example of Series.mean() Function
import pandas as pd
import numpy as np
# Create a Series
ser = pd.Series([13, 25, 6, 10, 12, 9, 20])
print(ser)
# Use Series.mean() function
ser2 = ser.mean()
print(ser2)
# Pandas series mean ignore nan
ser = pd.Series([13, 25, None, 10, 12, None, 20, 30, np.nan])
ser2 = ser.mean(skipna = True)
print(ser2)
7. Conclusion
In this article, I have explained the pandas series mean() function that returns the mean of values of a given series object with examples.
Happy Learning !!
Related Articles
Pandas Series.fillna() Function
Pandas.DataFrame.mean() Examples
How to Convert List to Pandas Series
Add Column Name to Pandas Series
Create a Set From a Series in Pandas
Convert GroupBy output from Series to DataFrame
Pandas rolling() Mean, Average, Sum Examples
Apply Multiple Filters to Pandas DataFrame or Series
How to Get Column Average or Mean in Pandas DataFrame
References
https://pandas.pydata.org/docs/reference/api/pandas.Series.mode.html
The Pandas Series.mean() method is used to calculate the mean or average of the values. It returns a float value representing the mean of the series. In this article, I will explain the syntax of Series.mean() function, its parameters, and how to compute the mean values of a given Series object with examples. 1. Syntax Read More Pandas, Python, pandas Series