[[{“value”:”This paper has been accepted at the Foundation Models in the Wild workshop at ICML 2024.
Large language models are versatile tools but are not suitable for small inference budgets. Small models have more efficient inference but their lower capacity means that their performance can be good only if one limits their scope to a specialized domain. This paper explores how to get a small language model with good specialized accuracy, even when specialization data is unknown during pretraining. We propose a novel architecture, projected networks (PN). PN is a high capacity network whose parameters…”}]] [[{“value”:”This paper has been accepted at the Foundation Models in the Wild workshop at ICML 2024.
Large language models are versatile tools but are not suitable for small inference budgets. Small models have more efficient inference but their lower capacity means that their performance can be good only if one limits their scope to a specialized domain. This paper explores how to get a small language model with good specialized accuracy, even when specialization data is unknown during pretraining. We propose a novel architecture, projected networks (PN). PN is a high capacity network whose parameters…”}]] Read More