Modern wearable devices can conveniently record various biosignals in the many different environments of daily living, enabling a rich view of individual health. However, not all biosignals are the same: high-fidelity biosignals, such as photoplethysmogram (PPG), contain more physiological information, but require optical sensors with a high power footprint. Alternatively, a lower-fidelity biosignal such as accelerometry has a significantly smaller power footprint and is available in almost any wearable device. While accelerometry is widely used for activity recognition and fitness, it is less… Modern wearable devices can conveniently record various biosignals in the many different environments of daily living, enabling a rich view of individual health. However, not all biosignals are the same: high-fidelity biosignals, such as photoplethysmogram (PPG), contain more physiological information, but require optical sensors with a high power footprint. Alternatively, a lower-fidelity biosignal such as accelerometry has a significantly smaller power footprint and is available in almost any wearable device. While accelerometry is widely used for activity recognition and fitness, it is less… Read More
Wearable Accelerometer Foundation Models for Health via Knowledge Distillation Apple Machine Learning Research
- by zetabyte