Skip to content

Prompting Whisper for Improved Verbatim Transcription and End-to-end Miscue Detection Apple Machine Learning Research

​[[{“value”:”*Equal Contributors
Identifying mistakes (i.e., miscues) made while reading aloud is commonly approached post-hoc by comparing automatic speech recognition (ASR) transcriptions to the target reading text. However, post-hoc methods perform poorly when ASR inaccurately transcribes verbatim speech. To improve on current methods for reading error annotation, we propose a novel end-to-end architecture that incorporates the target reading text via prompting and is trained for both improved verbatim transcription and direct miscue detection. Our contributions include: first, demonstrating that…”}]] [[{“value”:”*Equal Contributors
Identifying mistakes (i.e., miscues) made while reading aloud is commonly approached post-hoc by comparing automatic speech recognition (ASR) transcriptions to the target reading text. However, post-hoc methods perform poorly when ASR inaccurately transcribes verbatim speech. To improve on current methods for reading error annotation, we propose a novel end-to-end architecture that incorporates the target reading text via prompting and is trained for both improved verbatim transcription and direct miscue detection. Our contributions include: first, demonstrating that…”}]]  Read More  

Leave a Reply

Your email address will not be published. Required fields are marked *