Large language models (LLM) in natural language processing (NLP) have demonstrated great potential for in-context learning (ICL) — the ability to leverage a few sets of example prompts to adapt to various tasks without having to explicitly update the model weights. ICL has recently been explored for computer vision tasks with promising early outcomes. These approaches involve specialized training and/or additional data that complicate the process and limit its generalizability. In this work, we show that off-the-shelf Stable Diffusion models can be repurposed for visual in-context learning… Large language models (LLM) in natural language processing (NLP) have demonstrated great potential for in-context learning (ICL) — the ability to leverage a few sets of example prompts to adapt to various tasks without having to explicitly update the model weights. ICL has recently been explored for computer vision tasks with promising early outcomes. These approaches involve specialized training and/or additional data that complicate the process and limit its generalizability. In this work, we show that off-the-shelf Stable Diffusion models can be repurposed for visual in-context learning… Read More
Stable Diffusion Models are Secretly Good at Visual In-Context Learning Apple Machine Learning Research
- by zetabyte