Skip to content

When is Multicalibration Post-Processing Necessary? Apple Machine Learning Research

  • by

​Calibration is a well-studied property of predictors which guarantees meaningful uncertainty estimates. Multicalibration is a related notion — originating in algorithmic fairness — which requires predictors to be simultaneously calibrated over a potentially complex and overlapping collection of protected subpopulations (such as groups defined by ethnicity, race, or income). We conduct the first comprehensive study evaluating the usefulness of multicalibration post-processing across a broad set of tabular, image, and language datasets for models spanning from simple decision trees to 90… Calibration is a well-studied property of predictors which guarantees meaningful uncertainty estimates. Multicalibration is a related notion — originating in algorithmic fairness — which requires predictors to be simultaneously calibrated over a potentially complex and overlapping collection of protected subpopulations (such as groups defined by ethnicity, race, or income). We conduct the first comprehensive study evaluating the usefulness of multicalibration post-processing across a broad set of tabular, image, and language datasets for models spanning from simple decision trees to 90…  Read More  

Leave a Reply

Your email address will not be published. Required fields are marked *