Skip to content

Mapping Cells Through Time and Space With Moscot Apple Machine Learning Research

​Single-cell genomics technologies enable multimodal profiling of millions of cells across temporal and spatial dimensions. Experimental limitations prevent the measurement of all-encompassing cellular states in their native temporal dynamics or spatial tissue niche. Optimal transport theory has emerged as a powerful tool to overcome such constraints, enabling the recovery of the original cellular context. However, most algorithmic implementations currently available have not kept up the pace with increasing dataset complexity, so that current methods are unable to incorporate multimodal… Single-cell genomics technologies enable multimodal profiling of millions of cells across temporal and spatial dimensions. Experimental limitations prevent the measurement of all-encompassing cellular states in their native temporal dynamics or spatial tissue niche. Optimal transport theory has emerged as a powerful tool to overcome such constraints, enabling the recovery of the original cellular context. However, most algorithmic implementations currently available have not kept up the pace with increasing dataset complexity, so that current methods are unable to incorporate multimodal…  Read More  

Leave a Reply

Your email address will not be published. Required fields are marked *