Skip to content

Do LLMs Know Internally When They Follow Instructions? Apple Machine Learning Research

​Instruction-following is crucial for building AI agents with large language models (LLMs), as these models must adhere strictly to user-provided constraints and guidelines. However, LLMs often fail to follow even simple and clear instructions. To improve instruction-following behavior and prevent undesirable outputs, a deeper understanding of how LLMs’ internal states relate to these outcomes is required. In this work, we investigate whether LLMs encode information in their representations that correlates with instruction-following success—a property we term “knowing internally”. Our analysis… Instruction-following is crucial for building AI agents with large language models (LLMs), as these models must adhere strictly to user-provided constraints and guidelines. However, LLMs often fail to follow even simple and clear instructions. To improve instruction-following behavior and prevent undesirable outputs, a deeper understanding of how LLMs’ internal states relate to these outcomes is required. In this work, we investigate whether LLMs encode information in their representations that correlates with instruction-following success—a property we term “knowing internally”. Our analysis…  Read More  

Leave a Reply

Your email address will not be published. Required fields are marked *