Skip to content

Barriers for Learning in an Evolving World: Mathematical Understanding of Loss of Plasticity Apple Machine Learning Research

​Deep learning models excel in stationary data but struggle in non-stationary environments due to a phenomenon known as loss of plasticity (LoP), the degradation of their ability to learn in the future. This work presents a first-principles investigation of LoP in gradient-based learning. Grounded in dynamical systems theory, we formally define LoP by identifying stable manifolds in the parameter space that trap gradient trajectories. Our analysis reveals two primary mechanisms that create these traps: frozen units from activation saturation and cloned-unit manifolds from representational… Deep learning models excel in stationary data but struggle in non-stationary environments due to a phenomenon known as loss of plasticity (LoP), the degradation of their ability to learn in the future. This work presents a first-principles investigation of LoP in gradient-based learning. Grounded in dynamical systems theory, we formally define LoP by identifying stable manifolds in the parameter space that trap gradient trajectories. Our analysis reveals two primary mechanisms that create these traps: frozen units from activation saturation and cloned-unit manifolds from representational…  Read More